Involvement of hyaluronan in regulation of fibroblast phenotype.

نویسندگان

  • Soma Meran
  • David Thomas
  • Philip Stephens
  • John Martin
  • Timothy Bowen
  • Aled Phillips
  • Robert Steadman
چکیده

This study aimed to understand the role of the matrix polysaccharide, hyaluronan (HA), in influencing the scarring process by assessing its impact on regulating fibroblast behavior. Donor-matched human oral and dermal fibroblasts were used as models of nonscarring and scarring fibroblast phenotypes, respectively. Phenotypic differences in these two fibroblast populations were assessed and related to differences in HA synthesis and assembly. The two fibroblast populations showed intrinsic differences in their response to the profibrotic cytokine, transforming growth factor-beta1 (TGFbeta1), in that oral fibroblasts were resistant to TGFbeta1-driven myofibroblastic differentiation. In dermal fibroblasts, differentiation was associated with an induction of HA synthase (HAS1 and HAS2) transcription and assembly of pericellular HA coats. In comparison, resistance to differentiation in oral fibroblasts was associated with failure of induction of HAS1 and HAS2 transcription and failure of pericellular coat assembly. Furthermore, inhibition of HA synthesis in dermal fibroblasts significantly attenuated TGFbeta1-mediated differentiation. Interleukin-1beta stimulation resulted in induction of HAS1 and HAS2 transcription but did not induce phenotypic differentiation or induce HA coat assembly. In addition, neither overexpression nor down-regulation of HAS1 (the isoform uniquely deficient in nonscarring oral fibroblasts) influenced phenotypic differentiation. In conclusion, inhibiting HA synthesis modulates TGFbeta1-dependent responses in these cells preventing fibroblast to myofibroblast differentiation. Moreover, HA pericellular coat assembly, rather than HAS isoform expression, appears to be associated with phenotypic differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Severe lung fibrosis requires an invasive fibroblast phenotype regulated by hyaluronan and CD44

Tissue fibrosis is a major cause of morbidity, and idiopathic pulmonary fibrosis (IPF) is a terminal illness characterized by unremitting matrix deposition in the lung. The mechanisms that control progressive fibrosis are unknown. Myofibroblasts accumulate at sites of tissue remodeling and produce extracellular matrix components such as collagen and hyaluronan (HA) that ultimately compromise or...

متن کامل

Tumour regulation of fibroblast hyaluronan expression: a mechanism to facilitate tumour growth and invasion.

Hyaluronan, a high molecular weight glycosaminoglycan is associated with cellular proliferation and migration. In a number of different tumour types, there is a close correlation between tumour progression and hyaluronan production, either by the tumour cells or the surrounding stromal cells. We have examined the ability of an aggressive melanoma cell line (C8161) to stimulate the synthesis of ...

متن کامل

Differential effects of hyaluronan and its fragments on fibroblasts: relation to wound healing.

Hyaluronan (HA) is involved in wound healing and its biological properties depend on its molecular size. The effects of native HA and HA-12 and HA-880 saccharide fragments on human fibroblast proliferation and expression of matrix-related genes were studied. The three HA forms promoted cell adhesion and proliferation. Matrix metalloproteinase-1 and -3 mRNA were increased by all HA forms, wherea...

متن کامل

The Roles of Hyaluronan/RHAMM/CD44 and Their Respective Interactions along the Insidious Pathways of Fibrosarcoma Progression

Fibrosarcomas are rare malignant mesenchymal tumors originating from fibroblasts. Importantly, fibrosarcoma cells were shown to have a high content and turnover of extracellular matrix (ECM) components including hyaluronan (HA), proteoglycans, collagens, fibronectin, and laminin. ECMs are complicated structures that surround and support cells within tissues. During cancer progression, significa...

متن کامل

CD44 phosphorylation regulates melanoma cell and fibroblast migration on, but not attachment to, a hyaluronan substratum

BACKGROUND CD44 is a transmembrane receptor for the extracellular matrix glycosaminoglycan, hyaluronan. This receptor-ligand interaction plays an essential role in tumour progression, in embryonic tissue morphogenesis and in leukocyte migration during inflammation. It is well documented that the interaction between CD44 and hyaluronan is strictly regulated, but little is known about the relatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 282 35  شماره 

صفحات  -

تاریخ انتشار 2007